臺中港科技產業園區空品監測分析報告 (114年7月31日~9月1日)

一、監測目的及監測點說明

1-1 監測及分析目的

臺中市近年來因大型工業區及重大開發案陸續完工,加上原有工業區與重大污染源,致使環境中的空氣污染排放量日益增加,當地空氣品質甚至整個臺中市都可能受到影響。為掌握轄區內重大污染源附近地區及空氣污染突發事件之現場空氣品質狀況與污染源特性,有效降低揮發性有機物對環境的衝擊及減少對人民之危害,現已規劃藉由移動式空氣品質監測車之機動監測,可進行特定監測目的,包括民眾陳情、臨時性重大空氣污染事件等,以補現有固定式測站的不足,並隨時掌握主要污染來源,擬定適當的管制策略,以改善空氣品質。

針對監測數據進行分析期間趨勢及比對各類型資料,包括監測 期間物種與整體趨勢、篩選指標污染物及歷次監測結果進行比對分 析,且於監測期間篩選濃度較高值並分析其氣象條件,掌握該次監 測任務特定陳情對象或空氣污染事件污染源,提供特徵污染物或相 關污染源類型,以作為後續追蹤污染源之依據。

1-2 監測點特性及環境說明

VOC1 車於 114 年 7 月 31 日至 9 月 1 日架設臺中港科技產業園區,針對周圍環境空氣品質進行監測。

於架設監測前,已針對監測地點及附近可能產生之污染源進行評估,為確保監測地點能便利監測車設置相關設備,其設置篩選條件如表 1-2.1,依據篩選條件可確保架設所需基本需求,判別該地點周遭地理空間資訊(如鄰近障礙物、道路距離、是否有明顯污染源等),確認上述條件後再前往進行現勘。

表 1-2.1 監測地點評估原則

	- Ne = = - = == - = - = - = - = - = - = - =	
項目	評選項目	評選標準
1	監測地點可借用	
2	電源供應充足	電源充足穩定
3	電源距離	小於三十公尺
4	八方位障礙物	無障礙物
5	與障礙物的距離	大於兩倍建物高度
6	與鄰近樹木的距離	大於十公尺
7	與鄰近道路距離	依交通量而定
8	明顯鄰近的污染源	應無直接影響
9	容易到達及設置	
10	良好的安全與保全性	

二、污染源分析原則

2-1 監測項目

目前監測物種計有 59 項,包括工業區可能排放揮發性有機化 合物及異味化合物,參考美國環境保護署監測空氣中揮發性有機化 合物分析方法、現行 GC-MS 分析、臺中市工業區與科學園區特徵 污染物,可區分為氣狀污染物、有害氣體(22 項)及異味污染物(7 項), 另有監測氣象條件,詳見表 2-1.1。

表 2-1.1 移動式空氣品質監測車監測項目及物種

項次	物種	中文	項次	物種	中文
1	1,2,3-trimethyl benzene	1,2,3-三甲基苯	31	dimethyl ether	甲醚
2	1,2,4-trichlorobenzene	1,2,4-三氯苯	32	dimethyl sulfide	二甲基硫醚
3	1,2-dichloroethane	1,2-二氯乙烷	33	ethane	乙烷
4	1,3-butadiene	1,3-丁二烯	34	ethanol	乙醇
5	1-butene	1-丁烯	35	ethene	乙烯
6	1-methoxybutane	1-甲氧基丁烷	36	ethyl acetate	乙酸乙酯
7	2,6-toluene diisocyanate	2,6-甲苯二異氰酸酯	37	ethyl mercaptan	乙硫醇
8	2-methyl-2-butene	2-甲基-2-丁烯	38	formaldehyde	甲醛
9	2-methylpentane	2-甲基戊烷	39	formic acid	甲酸
10	2-propanethiol	2-丙硫醇	40	heptane	庚烷
11	2-propanol	2-丙醇	41	hexane	己烷
12	3-methyl-1-butanol	3-甲基-1-丁醇	42	hydrogen sulfide	硫化氫
13	3-methylhexane	3-甲基己烷	43	isobutane	異丁烷
14	Cyclohexane	環己烷	44	isobutene	異丁烯
15	N,N-dimethylmethanamide	二甲基甲醯胺	45	isopentane	異戊烷
16	acetaldehyde	乙醛	46	m-xylene	間-二甲苯
17	acetic acid	醋酸	47	methane	甲烷
18	acetone	丙酮	48	methanol	甲醇
19	acetylene	乙炔	49	methyl acetate	乙酸甲酯
20	acrylonitrile	丙烯腈	50	methyl chloride	氯甲烷
21	ammonia	氨	51	methyl cyclohexane	甲基環己烷
22	benzene	苯	52	methyl isobutyl ketone	甲基異丁酮
23	butane	丁烷	53	octane	辛烷
24	butanone	丁酮	54	pentane	戊烷
25	butyl acetate	乙酸丁酯	55	propanal	丙醛
26	chloroethene	氯乙烯	56	propane	丙烷
27	chloroform	氯仿	57	propene	丙烯
28	decane	癸烷	58	tetrachloroethene	四氯乙烯
29	dichloromethane	二氯甲烷	59	toluene	甲苯
30	dimethyl amine	二甲胺			

2-2 氣象條件

監測期間彙整風速及風向與溫、溼度等氣象因子,透過風花圖 (如圖 2-2.1)可瞭解該區風速及風向頻率,確認主要污染物的來源方 向,並透過風速大小,可推斷監測物種產生高值期間,其擴散條件 優劣來分析污染物是否由對應風向吹彿或是污染物受大氣影響導 致累積所造成之結果。

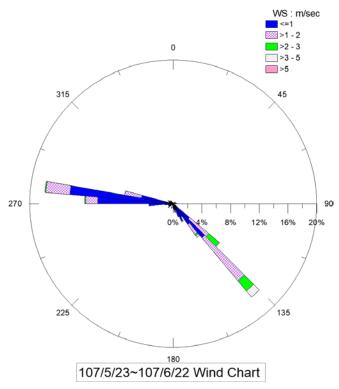


圖 2-2.1 氣象監測結果統計圖(範例)

三、監測數據分析

3-1 氣象分析

本次監測地點為臺中港科技產業園區,主要針對周圍大氣環境 監測,彙整監測各測項數據,統計監測逐時值、風速風向與等濃度 極座標於後續小節中。

彙整移動式空氣品質監測車資料進行分析,包含各揮發性有機物濃度、風速、風向、溫度及濕度等,圖 3-1.1 為監測期間氣象監測結果彙整,主要風向為南南西~南風,期間風速平均為 0.7 m/s,最大風速為 2.3 m/s。

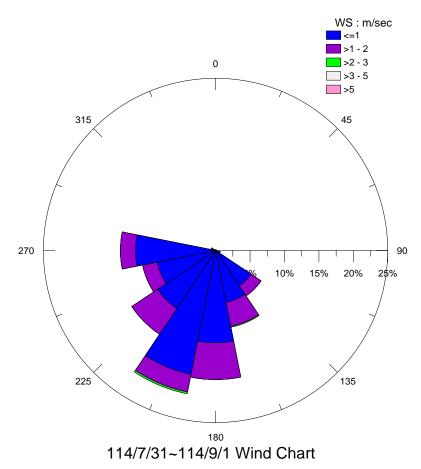


圖 3-1.1 氣象監測結果統計圖

3-2 整體趨勢分析

本次監測結果整體趨勢如圖 3-2.1,濃度較高物種主要以烷類、 烯類較多,監測前十項濃度較高濃度物種依序為甲烷、氨、乙烷、 異丁烷、丙酮、丁酮、甲苯、甲醛、乙酸及庚烷,其對應可能產生 之工業行為及特性如表 3-2.1 所示,監測期間日均值數據如表 3-2.2 所示。

表 3-2.1 前十項高濃度物種可能來源及特性(1/3)

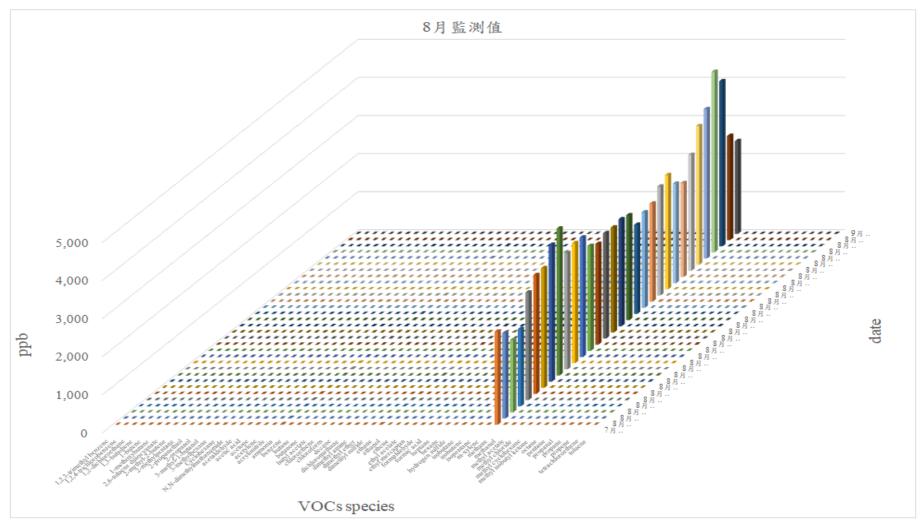

項次	物種名稱	农 3-2.1 削 1 項 同 振 及 初 俚 5 能 物 化 特 性	可能來源
均人	初性石件		
		常溫常壓下甲烷為無色無味的氣體,天	1.有機廢物的分解。
1	田.岭	然氣的最主要成分,家用天然氣的特殊	2.天然源頭(如沼澤)。
1	甲烷	味道,是為了安全而添加的人工氣味,	3.從化石燃料中提取。 4.動物(如牛)的消化過程。
		通常是使用甲硫醇或乙硫醇。	4.動物(如干)的消化過程。 5.稻田之中的細菌。
		氨(又稱氨氣、阿摩尼亞或無水氨),是無	1.在醫療方面,少量易揮發的氨作為使人
		色氣體,有強烈的刺激氣味,極易溶於	清醒的吸入劑。
		水,是所有食物和肥料的重要成分。也	2.生產硝酸、玻璃清潔劑。
2	与		3.有八成的氨生產氮肥。
2	氨	是藥物和商業清潔用品直接或間接的組	4.航空燃料。
		成部分,具有腐蝕性等危險性質,有廣	5.廣泛用的製冷劑之一,可用於空調、冷
		泛的用途,成為世界上產量最多的無機	藏和低溫,能用於各種形式的製冷壓縮
		化合物之一,約八成用於製作化肥。	機。
			1.工業生產的乙烷是從天然氣分離出來
		1.15.共业, 1.17.4. 1.14. 1	的或者是煉油廠的副產品。
3	乙烷	在標準狀況下乙烷為可燃氣體,無色無	2.用於制乙烯,氯乙烯,氯乙烷,冷凍劑
		嗅,在一定的濃度下如遇火可產生爆炸。	等。
			3.具有顯著的抗爆質量,因而,可以用在
			高壓縮比的發動機中。 1.異丁烷作為氟利昂的替代品。
		異丁烷(IUPAC 命名 2-甲基丙烷,又稱甲	1.共
		基丙烷)是一種烷烴,與(正)丁烷互為同	2. 家用小相和小個下的表行劑, 包含用作 噴霧器中的壓縮氣體。
4	異丁烷	分異構體。丁烷因碳原子與氫原子結合	3.與異丁烯經烴化而製造異辛烷,作為汽
	,, . ,, 3	狀態不同而可成正丁烷(n-butane)及異丁	油辛烷值的改進劑。
		烷(i-butane)兩種。	4.可作冷凍劑。
		/元(I-Dutane)网程。	5.作為發泡劑來製造保麗龍。

表 3-2.1 前十項高濃度物種可能來源及特性(2/3)

項次	物種名稱	物化特性	可能來源
5	丙酮	丙酮又稱二甲基酮、二甲基甲酮,簡稱 二甲酮,或稱醋酮、木酮,是最簡單的 酮,有特殊氣味的無色可燃液體,常溫 下為無色透明液體,易揮發、易燃, 芳香氣味,與水、甲醇、乙醇、乙醚、 氯仿和吡啶等均能互溶,能溶解醋酸纖 脂肪、樹脂和橡膠等,也能溶解醋酸纖維 素和硝酸纖維素,是一種重要的揮發性 有機溶劑。	1.卸除指甲油的去光水及油漆的稀釋劑。 2.有機溶劑,應用於醫藥、油漆、塑料、火藥、樹脂、橡膠、照相軟片等行業。 3.工業應用製造雙酚 A、甲基丙烯酸甲酯、丙酮氰醇、甲基異丁基酮等產品,以及塑膠、纖維、藥物及其他化學物質。 4.在建材方面,主要作為脂肪族減水劑的主要原料。
6	丁酮	丁酮也稱為甲乙酮(MEK),是一種有機 化合物。無色可燃液體,帶有一種強烈 的奶油糖果的甜味,類似於丙酮。	1.用作溶劑、變性劑、催化劑,也用於製取過氧化甲乙酮。 2.在自然界中也存在丁酮,一些樹會製造丁酮,在一些水果和蔬菜中也可以發現少量的丁酮。 3.可用於壓克力,PVC等乙機材料的融解和黏接。
7	甲苯	重要的芳烴化合物之一。在空氣中,甲苯只能不完全燃燒,火焰呈黃色,帶有一種特殊的芳香味(與苯的氣味類似),空氣中的甲苯濃度在 8ppm(百萬分之八)時,開始可以聞到味道,在常溫常壓下是一種無色透明,清澈如水的液體,幾乎不溶於水,但可以和二硫化碳,酒精,乙醚以任意比例混溶,在氯仿,丙酮和大多數其他常用有機溶劑中也有很好的溶解性。	1.實際應用中常常替代有相當毒性的苯 作為有機溶劑使用。 2.常用的化工原料,可用於製造噴漆、炸 藥、農藥、苯甲酸、染料、合成樹脂及 滌綸等。 3.汽油的組分之一。 4.其用途是製造塗料、塗料稀釋劑、指甲 油、漆器、黏著劑和橡膠。 5.用於印刷與皮革鞣製過程等。

表 3-2.1 前十項高濃度物種可能來源及特性(3/3)

項次	物種名稱	物化特性	可能來源
8	甲醛	是一種可燃、無色及有刺激性的氣體,是最常見的空氣污染毒物有有點。 為有不同建築物的產品均含有明確的,為可醛,主要來源為纖維板、三於板、三於板、三於板、三於板、三於板、三於板、三於板、三於板、三於板、三於	1.是一種極強的解標子。 2.一種極強的機關所不好 所屬保存。 2.一些低劣的水性內牆塗料及白乳膠 有使用,在醫院和學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學
9	乙酸	乙酸易揮發,是一種具有強烈刺激性氣味的無色液體,當溫度低於它的熔點時,就凝結成冰狀晶體,所以又叫冰醋酸。乙酸易溶於水和乙醇及其他有機溶劑,爆炸極限4%~17%(體積)。	1.用於制造聚乙酸乙烯酯和纖維素乙酸酯(又稱醋酸纖維)。 2.廣泛用於油漆工業,是氧化反應的良好溶劑,是對二甲苯氧化生產對苯二甲酸的溶劑,也是有機合成的重要原料。 3.用作農藥、醫藥和染料等工業的溶劑和原料,在照相藥品制造、織物印染和橡膠工業中都有廣泛用途。 4.醋酸廣泛用於合成纖維、塗料、醫藥、農藥、食品添加劑、染纖等工業。
10	庚烷	有 9 種同分異構體,若考慮到光學異構則有 11 種同分異構體,包括庚烷、2-甲基己烷、3-甲基己烷、2,2-二甲基戊烷、2,3-二甲基戊烷、3,3-二甲基戊烷、3-乙基戊烷、2,2,3-三甲基丁烷,其中大多數存於石油的汽油餾出物中。	1.用作分析試劑,汽油機爆震試驗標準。 2.色譜分析參比物質,溶劑。 3.能刺激呼吸道,高濃度時有麻醉作用。

備註:分析濃度較高前10項(甲烷、氨、乙烷、異丁烷、丙酮、丁酮、甲苯、甲醛、乙酸及庚烷)

圖 3-2.1 臺中港科技產業園區監測結果

表 3-2.2 監測日均值(1/30)

114 年	監測測項(ppb)				
114 平	1,2,3-三甲基苯	1,2,4-三氯苯	1,2-二氯乙烷	1,3-丁二烯	
7月31日	ND	ND	ND	ND	
8月1日	ND	<loq< td=""><td>0.14</td><td>ND</td></loq<>	0.14	ND	
8月2日	ND	<loq< td=""><td>0.20</td><td>ND</td></loq<>	0.20	ND	
8月3日	ND	<loq< td=""><td>0.15</td><td><loq< td=""></loq<></td></loq<>	0.15	<loq< td=""></loq<>	
8月4日	ND	<loq< td=""><td>0.20</td><td><loq< td=""></loq<></td></loq<>	0.20	<loq< td=""></loq<>	
8月5日	ND	<loq< td=""><td>0.25</td><td><loq< td=""></loq<></td></loq<>	0.25	<loq< td=""></loq<>	
8月6日	ND	<loq< td=""><td>0.28</td><td>0.05</td></loq<>	0.28	0.05	
8月7日	<loq< td=""><td><loq< td=""><td>0.30</td><td>0.05</td></loq<></td></loq<>	<loq< td=""><td>0.30</td><td>0.05</td></loq<>	0.30	0.05	
8月8日	<loq< td=""><td><loq< td=""><td>0.42</td><td>0.10</td></loq<></td></loq<>	<loq< td=""><td>0.42</td><td>0.10</td></loq<>	0.42	0.10	
8月9日	<loq< td=""><td><loq< td=""><td>0.48</td><td>0.13</td></loq<></td></loq<>	<loq< td=""><td>0.48</td><td>0.13</td></loq<>	0.48	0.13	
8月10日	ND	<loq< td=""><td>0.28</td><td>0.14</td></loq<>	0.28	0.14	
8月11日	ND	<loq< td=""><td>0.28</td><td>0.13</td></loq<>	0.28	0.13	
8月12日	ND	<loq< td=""><td>0.33</td><td>0.13</td></loq<>	0.33	0.13	
8月13日	<loq< td=""><td><loq< td=""><td>0.34</td><td>0.11</td></loq<></td></loq<>	<loq< td=""><td>0.34</td><td>0.11</td></loq<>	0.34	0.11	
8月14日	ND	<loq< td=""><td>0.39</td><td>0.08</td></loq<>	0.39	0.08	
8月15日	ND	<loq< td=""><td>0.28</td><td>0.13</td></loq<>	0.28	0.13	
8月16日	ND	<loq< td=""><td>0.27</td><td>0.12</td></loq<>	0.27	0.12	
8月17日	ND	<loq< td=""><td>0.29</td><td>0.13</td></loq<>	0.29	0.13	
8月18日	ND	<loq< td=""><td>0.31</td><td>0.11</td></loq<>	0.31	0.11	
8月19日	ND	<loq< td=""><td>0.22</td><td>0.09</td></loq<>	0.22	0.09	
8月20日	ND	<loq< td=""><td>0.23</td><td>0.09</td></loq<>	0.23	0.09	
8月21日	ND	<loq< td=""><td>0.26</td><td>0.10</td></loq<>	0.26	0.10	
8月22日	ND	<loq< td=""><td>0.35</td><td>0.12</td></loq<>	0.35	0.12	

表 3-2.2 監測日均值(2/30)

1114 左	監測測項(ppb)				
114 年	1,2,3-三甲基苯	1,2,4-三氯苯	1,2-二氯乙烷	1,3-丁二烯	
8月23日	ND	<loq< td=""><td>0.36</td><td>0.11</td></loq<>	0.36	0.11	
8月24日	ND	<loq< td=""><td>0.34</td><td>0.12</td></loq<>	0.34	0.12	
8月25日	ND	<loq< td=""><td>0.26</td><td>0.10</td></loq<>	0.26	0.10	
8月26日	ND	<loq< td=""><td>0.31</td><td>0.13</td></loq<>	0.31	0.13	
8月27日	<loq< td=""><td><loq< td=""><td>0.40</td><td>0.17</td></loq<></td></loq<>	<loq< td=""><td>0.40</td><td>0.17</td></loq<>	0.40	0.17	
8月28日	<loq< td=""><td><loq< td=""><td>0.49</td><td>0.17</td></loq<></td></loq<>	<loq< td=""><td>0.49</td><td>0.17</td></loq<>	0.49	0.17	
8月29日	<loq< td=""><td>0.02</td><td>0.61</td><td>0.29</td></loq<>	0.02	0.61	0.29	
8月30日	<loq< td=""><td><loq< td=""><td>0.51</td><td>0.26</td></loq<></td></loq<>	<loq< td=""><td>0.51</td><td>0.26</td></loq<>	0.51	0.26	
8月31日	ND	<loq< td=""><td>0.26</td><td>0.12</td></loq<>	0.26	0.12	
9月1日	ND	<loq< td=""><td>0.26</td><td>0.13</td></loq<>	0.26	0.13	
平均值	ND	<loq< td=""><td>0.31</td><td>0.11</td></loq<>	0.31	0.11	
最大值	<loq< td=""><td>0.02</td><td>0.61</td><td>0.29</td></loq<>	0.02	0.61	0.29	
LOQ	0.0115	0.0221	0.0292	0.0437	
LOD	0.0035	0.0066	0.0088	0.0131	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(3/30)

11.4 左	監測測項(ppb)				
114 年 —	1-丁烯	1-甲氧基丁烷	2,6-甲苯二異氰酸酯	2-甲基-2-丁烯	
7月31日	ND	ND	ND	ND	
8月1日	ND	0.64	0.02	<loq< td=""></loq<>	
8月2日	ND	0.74	0.02	<loq< td=""></loq<>	
8月3日	ND	0.55	0.02	ND	
8月4日	ND	0.50	0.02	<loq< td=""></loq<>	
8月5日	ND	0.53	0.02	<loq< td=""></loq<>	
8月6日	ND	0.55	0.02	<loq< td=""></loq<>	
8月7日	ND	0.59	0.02	<loq< td=""></loq<>	
8月8日	ND	0.58	0.02	<loq< td=""></loq<>	
8月9日	ND	0.58	0.02	<loq< td=""></loq<>	
8月10日	ND	0.50	0.04	<loq< td=""></loq<>	
8月11日	ND	0.48	0.02	<loq< td=""></loq<>	
8月12日	ND	0.49	0.02	<loq< td=""></loq<>	
8月13日	ND	0.47	0.02	<loq< td=""></loq<>	
8月14日	ND	0.47	0.02	<loq< td=""></loq<>	
8月15日	ND	0.41	0.02	<loq< td=""></loq<>	
8月16日	ND	0.43	0.02	<loq< td=""></loq<>	
8月17日	ND	0.42	0.02	<loq< td=""></loq<>	
8月18日	ND	0.49	0.03	<loq< td=""></loq<>	
8月19日	ND	0.44	0.02	ND	
8月20日	ND	0.47	0.02	<loq< td=""></loq<>	
8月21日	ND	0.46	0.02	<loq< td=""></loq<>	
8月22日	ND	0.44	0.02	<loq< td=""></loq<>	

表 3-2.2 監測日均值(4/30)

114 年	監測測項(ppb)				
114 平	1-丁烯	1-甲氧基丁烷	2,6-甲苯二異氰酸酯	2-甲基-2-丁烯	
8月23日	ND	0.44	0.02	<loq< td=""></loq<>	
8月24日	ND	0.40	0.02	ND	
8月25日	ND	0.40	0.02	<loq< td=""></loq<>	
8月26日	ND	0.48	0.02	<loq< td=""></loq<>	
8月27日	ND	0.55	0.03	<loq< td=""></loq<>	
8月28日	ND	0.58	0.02	<loq< td=""></loq<>	
8月29日	ND	0.59	0.03	<loq< td=""></loq<>	
8月30日	ND	0.56	0.03	<loq< td=""></loq<>	
8月31日	ND	0.39	0.02	<loq< td=""></loq<>	
9月1日	ND	0.35	0.02	ND	
平均值	ND	0.50	0.02	<loq< td=""></loq<>	
最大值	ND	0.74	0.04	<loq< td=""></loq<>	
LOQ	0.0313	0.0493	0.0017	0.0143	
LOD	0.0094	0.0148	0.0005	0.0043	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(5/30)

111 年	監測測項(ppb)				
114年 —	2-甲基戊烷	2-丙硫醇	2-丙醇	3-甲基-1-丁醇	
7月31日	ND	ND	ND	ND	
8月1日	0.20	0.66	0.16	0.55	
8月2日	0.21	0.62	0.10	0.34	
8月3日	0.16	0.48	0.05	0.29	
8月4日	0.20	0.49	0.11	0.33	
8月5日	0.19	0.58	0.11	0.41	
8月6日	0.23	0.55	0.13	0.65	
8月7日	0.22	0.64	0.26	0.60	
8月8日	0.29	0.65	0.31	1.05	
8月9日	0.34	0.67	0.19	1.59	
8月10日	0.18	0.53	0.08	0.89	
8月11日	0.18	0.44	0.08	0.90	
8月12日	0.22	0.51	0.47	1.56	
8月13日	0.25	0.43	0.35	1.16	
8月14日	0.21	0.53	1.56	1.73	
8月15日	0.20	0.47	0.25	1.24	
8月16日	0.18	0.44	0.12	1.02	
8月17日	0.21	0.50	0.15	1.12	
8月18日	0.26	0.47	0.14	0.99	
8月19日	0.17	0.40	0.22	0.62	
8月20日	0.18	0.42	0.12	0.60	
8月21日	0.18	0.48	0.11	0.72	
8月22日	0.22	0.56	0.58	1.23	

表 3-2.2 監測日均值(6/30)

114 年	監測測項(ppb)				
114 平	2-甲基戊烷	2-丙硫醇	2-丙醇	3-甲基-1-丁醇	
8月23日	0.23	0.61	0.48	1.15	
8月24日	0.19	0.60	0.72	1.18	
8月25日	0.17	0.49	0.14	0.64	
8月26日	0.19	0.52	0.16	0.84	
8月27日	0.26	0.72	0.14	1.15	
8月28日	0.30	0.70	0.23	1.58	
8月29日	0.27	0.81	0.30	2.67	
8月30日	0.22	0.70	0.21	1.88	
8月31日	0.16	0.48	0.09	0.90	
9月1日	0.10	0.39	0.07	0.72	
平均值	0.21	0.55	0.26	1.01	
最大值	0.34	0.81	1.56	2.67	
LOQ	0.0053	0.0877	0.0059	0.0473	
LOD	0.0016	0.0263	0.0018	0.0142	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(7/30)

11.4 年	監測測項(ppb)				
114 年 —	3-甲基己烷	環己烷	二甲基甲醯胺	乙醛	
7月31日	ND	ND	ND	ND	
8月1日	0.54	0.17	1.26	0.36	
8月2日	0.53	0.12	0.74	0.24	
8月3日	0.45	0.11	0.44	0.19	
8月4日	0.45	0.11	0.50	0.22	
8月5日	0.51	0.16	0.53	0.28	
8月6日	0.52	0.20	0.49	0.32	
8月7日	0.56	0.20	0.61	0.36	
8月8日	0.63	0.28	0.56	0.42	
8月9日	0.65	0.34	0.52	0.43	
8月10日	0.52	0.24	0.48	0.22	
8月11日	0.51	0.24	0.36	0.23	
8月12日	0.52	0.26	0.56	0.28	
8月13日	0.47	0.22	0.50	0.25	
8月14日	0.44	0.17	1.10	0.39	
8月15日	0.47	0.24	0.45	0.23	
8月16日	0.45	0.23	0.41	0.22	
8月17日	0.51	0.26	0.39	0.24	
8月18日	0.50	0.27	0.40	0.26	
8月19日	0.43	0.19	0.37	0.22	
8月20日	0.43	0.19	0.54	0.23	
8月21日	0.43	0.19	0.40	0.25	
8月22日	0.52	0.25	0.60	0.32	

表 3-2.2 監測日均值(8/30)

114 年	監測測項(ppb)				
	3-甲基己烷	環己烷	二甲基甲醯胺	乙醛	
8月23日	0.53	0.24	0.62	0.34	
8月24日	0.50	0.23	0.65	0.32	
8月25日	0.46	0.19	0.32	0.25	
8月26日	0.51	0.25	0.30	0.29	
8月27日	0.67	0.33	0.38	0.41	
8月28日	0.71	0.32	0.43	0.44	
8月29日	0.83	0.50	0.41	0.43	
8月30日	0.66	0.41	0.35	0.33	
8月31日	0.50	0.21	0.28	0.25	
9月1日	0.41	0.16	0.28	0.19	
平均值	0.53	0.23	0.51	0.29	
最大值	0.83	0.50	1.26	0.44	
LOQ	0.0206	0.0470	0.0055	0.0165	
LOD	0.0062	0.0141	0.0017	0.0050	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(9/30)

114 年		監測測	項(ppb)	
114 平	醋酸	丙酮	乙炔	丙烯腈
7月31日	ND	ND	ND	ND
8月1日	2.47	4.68	0.02	<loq< td=""></loq<>
8月2日	1.48	2.48	0.03	<loq< td=""></loq<>
8月3日	1.10	1.52	0.03	<loq< td=""></loq<>
8月4日	1.19	1.87	0.04	<loq< td=""></loq<>
8月5日	1.42	2.11	0.05	<loq< td=""></loq<>
8月6日	1.56	2.32	0.06	<loq< td=""></loq<>
8月7日	1.66	2.73	0.06	0.001
8月8日	1.78	3.17	0.06	0.002
8月9日	1.66	2.86	0.07	0.002
8月10日	1.06	1.66	0.07	0.002
8月11日	0.92	1.86	0.08	0.002
8月12日	1.09	3.77	0.07	0.002
8月13日	1.23	3.00	0.06	0.001
8月14日	1.87	3.23	0.05	0.001
8月15日	1.25	2.36	0.06	0.002
8月16日	1.08	2.52	0.06	0.002
8月17日	1.01	2.41	0.06	0.002
8月18日	1.05	2.25	0.06	0.002
8月19日	1.15	1.58	0.05	0.002
8月20日	0.96	1.46	0.05	0.002
8月21日	1.13	1.38	0.05	0.002
8月22日	1.54	1.87	0.06	0.002

表 3-2.2 監測日均值(10/30)

114 年 —		監測測項(ppb)				
	醋酸	丙酮	乙炔	丙烯腈		
8月23日	1.62	1.82	0.05	0.002		
8月24日	1.38	1.33	0.06	0.002		
8月25日	1.53	1.44	0.05	0.001		
8月26日	1.51	1.56	0.05	0.002		
8月27日	1.53	2.05	0.07	0.003		
8月28日	1.83	2.65	0.07	0.002		
8月29日	2.22	2.27	0.09	0.004		
8月30日	1.76	1.86	0.08	0.004		
8月31日	1.44	1.39	0.04	0.002		
9月1日	1.42	1.04	0.05	0.002		
平均值	1.43	2.20	0.06	0.002		
最大值	2.47	4.68	0.09	0.004		
LOQ	0.0140	0.0054	0.0030	0.0012		
LOD	0.0042	0.0016	0.0009	0.0003		

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(11/30)

114 年 —	監測測項(ppb)				
114 平	氨	苯	丁烷	丁酮	
7月31日	ND	ND	ND	ND	
8月1日	15.3	0.40	<loq< td=""><td>0.78</td></loq<>	0.78	
8月2日	14.0	0.33	<loq< td=""><td>1.09</td></loq<>	1.09	
8月3日	10.2	0.28	<loq< td=""><td>0.64</td></loq<>	0.64	
8月4日	8.45	0.30	<loq< td=""><td>1.71</td></loq<>	1.71	
8月5日	9.14	0.41	<loq< td=""><td>1.03</td></loq<>	1.03	
8月6日	9.67	0.58	<loq< td=""><td>1.49</td></loq<>	1.49	
8月7日	8.12	0.45	<loq< td=""><td>1.93</td></loq<>	1.93	
8月8日	9.90	0.55	<loq< td=""><td>2.17</td></loq<>	2.17	
8月9日	10.6	0.54	<loq< td=""><td>1.59</td></loq<>	1.59	
8月10日	15.3	0.41	<loq< td=""><td>0.69</td></loq<>	0.69	
8月11日	13.6	0.50	<loq< td=""><td>0.84</td></loq<>	0.84	
8月12日	10.7	0.45	<loq< td=""><td>1.47</td></loq<>	1.47	
8月13日	5.46	0.37	<loq< td=""><td>2.51</td></loq<>	2.51	
8月14日	5.01	0.39	<loq< td=""><td>8.88</td></loq<>	8.88	
8月15日	7.70	0.35	<loq< td=""><td>1.96</td></loq<>	1.96	
8月16日	7.41	0.40	<loq< td=""><td>1.47</td></loq<>	1.47	
8月17日	7.41	0.35	<loq< td=""><td>1.26</td></loq<>	1.26	
8月18日	7.68	0.40	<loq< td=""><td>0.80</td></loq<>	0.80	
8月19日	8.65	0.33	<loq< td=""><td>0.72</td></loq<>	0.72	
8月20日	9.54	0.33	<loq< td=""><td>1.74</td></loq<>	1.74	
8月21日	10.6	0.29	<loq< td=""><td>0.98</td></loq<>	0.98	
8月22日	11.2	0.36	<loq< td=""><td>1.72</td></loq<>	1.72	

表 3-2.2 監測日均值(12/30)

114 年	監測測項(ppb)				
	氨	苯	丁烷	丁酮	
8月23日	9.47	0.39	<loq< td=""><td>3.26</td></loq<>	3.26	
8月24日	9.34	0.32	<loq< td=""><td>1.55</td></loq<>	1.55	
8月25日	6.54	0.32	<loq< td=""><td>1.59</td></loq<>	1.59	
8月26日	9.76	0.34	<loq< td=""><td>1.60</td></loq<>	1.60	
8月27日	12.6	0.40	<loq< td=""><td>1.65</td></loq<>	1.65	
8月28日	11.8	0.56	<loq< td=""><td>3.86</td></loq<>	3.86	
8月29日	15.0	0.45	<loq< td=""><td>2.24</td></loq<>	2.24	
8月30日	12.0	0.37	<loq< td=""><td>1.96</td></loq<>	1.96	
8月31日	3.33	0.29	<loq< td=""><td>0.85</td></loq<>	0.85	
9月1日	3.53	0.21	<loq< td=""><td>0.63</td></loq<>	0.63	
平均值	9.66	0.39	<loq< td=""><td>1.77</td></loq<>	1.77	
最大值	15.3	0.58	<loq< td=""><td>8.88</td></loq<>	8.88	
LOQ	0.0052	0.0024	0.0312	0.0066	
LOD	0.0016	0.0007	0.0094	0.0020	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(13/30)

11.4 左	監測測項(ppb)				
114 年 —	乙酸丁酯	氯乙烯	氯仿	癸烷	
7月31日	ND	ND	ND	ND	
8月1日	0.14	0.26	0.35	0.46	
8月2日	0.10	0.29	0.26	0.34	
8月3日	0.08	0.21	0.20	0.22	
8月4日	0.10	0.28	0.22	0.21	
8月5日	0.12	0.36	0.23	0.24	
8月6日	0.14	0.40	0.31	0.24	
8月7日	0.16	0.44	0.28	0.25	
8月8日	0.19	0.59	0.33	0.22	
8月9日	0.20	0.69	0.34	0.23	
8月10日	0.09	0.40	0.27	0.24	
8月11日	0.10	0.41	0.29	0.25	
8月12日	0.12	0.47	0.30	0.22	
8月13日	0.11	0.47	0.26	0.19	
8月14日	0.16	0.58	0.21	0.22	
8月15日	0.10	0.40	0.25	0.20	
8月16日	0.10	0.38	0.28	0.20	
8月17日	0.11	0.42	0.29	0.21	
8月18日	0.12	0.41	0.33	0.22	
8月19日	0.09	0.32	0.22	0.20	
8月20日	0.10	0.33	0.26	0.17	
8月21日	0.11	0.37	0.25	0.18	
8月22日	0.13	0.50	0.26	0.20	

表 3-2.2 監測日均值(14/30)

114 年	監測測項(ppb)				
	乙酸丁酯	氯乙烯	氯仿	癸烷	
8月23日	0.14	0.52	0.27	0.20	
8月24日	0.13	0.54	0.26	0.22	
8月25日	0.11	0.37	0.22	0.20	
8月26日	0.12	0.45	0.25	0.18	
8月27日	0.18	0.58	0.31	0.23	
8月28日	0.19	0.72	0.32	0.21	
8月29日	0.17	0.87	0.45	0.23	
8月30日	0.13	0.74	0.34	0.22	
8月31日	0.11	0.37	0.23	0.19	
9月1日	<loq< td=""><td>0.38</td><td>0.16</td><td>0.17</td></loq<>	0.38	0.16	0.17	
平均值	0.13	0.45	0.28	0.22	
最大值	0.20	0.87	0.45	0.46	
LOQ	0.0743	0.0037	0.0058	0.0029	
LOD	0.0223	0.0011	0.0017	0.0009	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(15/30)

114 年 —		監測測項(ppb)				
114 平	二氯甲烷	二甲胺	甲醚	二甲基硫醚		
7月31日	ND	ND	ND	ND		
8月1日	0.61	0.50	0.05	0.21		
8月2日	0.46	0.35	0.03	0.23		
8月3日	0.36	0.22	0.03	0.17		
8月4日	0.40	0.29	0.03	0.23		
8月5日	0.42	0.44	0.04	0.29		
8月6日	0.54	0.44	0.05	0.33		
8月7日	0.47	0.48	0.05	0.37		
8月8日	0.59	0.55	0.07	0.49		
8月9日	0.61	0.55	0.11	0.55		
8月10日	0.48	0.38	0.05	0.32		
8月11日	0.51	0.31	0.05	0.34		
8月12日	0.52	0.30	0.05	0.35		
8月13日	0.46	0.29	0.05	0.35		
8月14日	0.38	0.56	0.04	0.36		
8月15日	0.45	0.42	0.05	0.33		
8月16日	0.51	0.38	0.05	0.30		
8月17日	0.52	0.37	0.06	0.34		
8月18日	0.57	0.49	0.07	0.33		
8月19日	0.40	0.42	0.04	0.27		
8月20日	0.46	0.53	0.04	0.27		
8月21日	0.43	0.57	0.04	0.29		
8月22日	0.47	0.49	0.05	0.40		

表 3-2.2 監測日均值(16/30)

111 年	監測測項(ppb)				
114 年	二氯甲烷	二甲胺	甲醚	二甲基硫醚	
8月23日	0.49	0.53	0.06	0.40	
8月24日	0.46	0.34	0.05	0.39	
8月25日	0.39	0.38	0.05	0.31	
8月26日	0.45	0.46	0.06	0.36	
8月27日	0.54	0.45	0.08	0.49	
8月28日	0.58	0.52	0.08	0.59	
8月29日	0.80	0.56	0.10	0.70	
8月30日	0.62	0.46	0.09	0.57	
8月31日	0.41	0.35	0.06	0.31	
9月1日	0.27	0.21	0.05	0.29	
平均值	0.49	0.43	0.06	0.36	
最大值	0.80	0.57	0.11	0.70	
LOQ	0.0316	0.0115	0.0226	0.0467	
LOD	0.0095	0.0035	0.0068	0.0140	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(17/30)

114 年	監測測項(ppb)				
114 平	乙烷	乙醇	乙烯	乙酸乙酯	
7月31日	ND	ND	ND	ND	
8月1日	11.0	0.43	0.07	1.21	
8月2日	6.54	0.34	0.05	1.08	
8月3日	5.74	0.23	0.04	0.65	
8月4日	5.86	0.28	0.06	1.27	
8月5日	7.32	0.42	0.07	1.10	
8月6日	7.96	0.42	0.08	1.34	
8月7日	7.65	0.45	0.07	1.52	
8月8日	7.13	0.50	0.11	1.93	
8月9日	7.95	0.50	0.10	1.54	
8月10日	7.29	0.33	0.06	0.62	
8月11日	7.52	0.29	0.07	0.67	
8月12日	7.43	0.29	0.07	0.87	
8月13日	6.29	0.27	0.07	0.96	
8月14日	5.71	0.47	0.05	1.74	
8月15日	6.61	0.34	0.06	0.84	
8月16日	6.89	0.32	0.06	0.75	
8月17日	7.07	0.32	0.06	0.65	
8月18日	6.90	0.41	0.07	0.58	
8月19日	6.82	0.34	0.05	0.67	
8月20日	6.76	0.43	0.08	1.17	
8月21日	6.77	0.46	0.05	1.05	
8月22日	7.45	0.42	0.06	0.99	

表 3-2.2 監測日均值(18/30)

114 年	監測測項(ppb)				
	乙烷	乙醇	乙烯	乙酸乙酯	
8月23日	7.35	0.50	0.06	1.00	
8月24日	7.77	0.31	0.05	0.69	
8月25日	7.09	0.34	0.06	0.66	
8月26日	7.49	0.44	0.06	1.13	
8月27日	9.30	0.45	0.08	1.30	
8月28日	10.1	0.52	0.10	1.60	
8月29日	12.2	0.57	0.10	1.23	
8月30日	11.0	0.46	0.07	0.96	
8月31日	7.93	0.35	0.05	0.64	
9月1日	8.12	0.21	0.04	0.36	
平均值	7.66	0.39	0.07	1.03	
最大值	12.2	0.57	0.11	1.93	
LOQ	1.3267	0.0110	0.0037	0.2760	
LOD	0.3980	0.0033	0.0011	0.0828	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(19/30)

114 年	監測測項(ppb)				
114 +	乙硫醇	甲醛	甲酸	庚烷	
7月31日	ND	ND	ND	ND	
8月1日	<loq< td=""><td>0.63</td><td>0.38</td><td>1.06</td></loq<>	0.63	0.38	1.06	
8月2日	<loq< td=""><td>0.45</td><td>0.25</td><td>0.94</td></loq<>	0.45	0.25	0.94	
8月3日	ND	0.55	0.16	0.84	
8月4日	<loq< td=""><td>0.70</td><td>0.22</td><td>0.79</td></loq<>	0.70	0.22	0.79	
8月5日	<loq< td=""><td>1.02</td><td>0.31</td><td>0.87</td></loq<>	1.02	0.31	0.87	
8月6日	<loq< td=""><td>1.31</td><td>0.33</td><td>0.96</td></loq<>	1.31	0.33	0.96	
8月7日	<loq< td=""><td>1.47</td><td>0.40</td><td>0.98</td></loq<>	1.47	0.40	0.98	
8月8日	<loq< td=""><td>1.53</td><td>0.46</td><td>1.16</td></loq<>	1.53	0.46	1.16	
8月9日	<loq< td=""><td>1.59</td><td>0.47</td><td>1.23</td></loq<>	1.59	0.47	1.23	
8月10日	ND	1.22	0.22	1.09	
8月11日	<loq< td=""><td>1.25</td><td>0.21</td><td>1.06</td></loq<>	1.25	0.21	1.06	
8月12日	<loq< td=""><td>1.34</td><td>0.34</td><td>1.12</td></loq<>	1.34	0.34	1.12	
8月13日	<loq< td=""><td>1.52</td><td>0.30</td><td>0.94</td></loq<>	1.52	0.30	0.94	
8月14日	<loq< td=""><td>1.75</td><td>0.59</td><td>0.88</td></loq<>	1.75	0.59	0.88	
8月15日	<loq< td=""><td>1.55</td><td>0.33</td><td>1.03</td></loq<>	1.55	0.33	1.03	
8月16日	<loq< td=""><td>1.53</td><td>0.24</td><td>0.96</td></loq<>	1.53	0.24	0.96	
8月17日	<loq< td=""><td>1.57</td><td>0.27</td><td>1.11</td></loq<>	1.57	0.27	1.11	
8月18日	<loq< td=""><td>1.52</td><td>0.31</td><td>1.04</td></loq<>	1.52	0.31	1.04	
8月19日	<loq< td=""><td>1.26</td><td>0.31</td><td>0.97</td></loq<>	1.26	0.31	0.97	
8月20日	<loq< td=""><td>1.38</td><td>0.32</td><td>0.91</td></loq<>	1.38	0.32	0.91	
8月21日	<loq< td=""><td>1.37</td><td>0.34</td><td>0.84</td></loq<>	1.37	0.34	0.84	
8月22日	<loq< td=""><td>1.31</td><td>0.49</td><td>1.03</td></loq<>	1.31	0.49	1.03	

表 3-2.2 監測日均值(20/30)

111 / /2	監測測項(ppb)				
114 年	乙硫醇	甲醛	甲酸	庚烷	
8月23日	<loq< td=""><td>1.31</td><td>0.51</td><td>1.03</td></loq<>	1.31	0.51	1.03	
8月24日	<loq< td=""><td>1.35</td><td>0.41</td><td>1.00</td></loq<>	1.35	0.41	1.00	
8月25日	<loq< td=""><td>1.53</td><td>0.26</td><td>0.89</td></loq<>	1.53	0.26	0.89	
8月26日	<loq< td=""><td>1.61</td><td>0.35</td><td>1.05</td></loq<>	1.61	0.35	1.05	
8月27日	<loq< td=""><td>1.70</td><td>0.38</td><td>1.22</td></loq<>	1.70	0.38	1.22	
8月28日	<loq< td=""><td>1.80</td><td>0.46</td><td>1.28</td></loq<>	1.80	0.46	1.28	
8月29日	<loq< td=""><td>1.76</td><td>0.53</td><td>1.70</td></loq<>	1.76	0.53	1.70	
8月30日	<loq< td=""><td>2.01</td><td>0.38</td><td>1.54</td></loq<>	2.01	0.38	1.54	
8月31日	<loq< td=""><td>2.88</td><td>0.25</td><td>0.93</td></loq<>	2.88	0.25	0.93	
9月1日	ND	3.05	0.14	0.81	
平均值	<loq< td=""><td>1.46</td><td>0.34</td><td>1.04</td></loq<>	1.46	0.34	1.04	
最大值	<loq< td=""><td>3.05</td><td>0.59</td><td>1.70</td></loq<>	3.05	0.59	1.70	
LOQ	0.3600	0.0075	0.0770	0.0060	
LOD	0.1080	0.0023	0.0231	0.0018	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(21/30)

114 年		監測測	項(ppb)	
114 平	己烷	硫化氫	異丁烷	異丁烯
7月31日	ND	ND	ND	ND
8月1日	0.46	ND	5.65	0.01
8月2日	0.51	ND	4.21	0.01
8月3日	0.48	ND	3.42	0.01
8月4日	0.45	ND	4.14	0.01
8月5日	0.45	<loq< td=""><td>5.08</td><td>0.01</td></loq<>	5.08	0.01
8月6日	0.49	<loq< td=""><td>6.14</td><td>0.02</td></loq<>	6.14	0.02
8月7日	0.45	<loq< td=""><td>6.84</td><td>0.02</td></loq<>	6.84	0.02
8月8日	0.50	<loq< td=""><td>7.43</td><td>0.03</td></loq<>	7.43	0.03
8月9日	0.54	<loq< td=""><td>6.73</td><td>0.04</td></loq<>	6.73	0.04
8月10日	0.57	<loq< td=""><td>5.65</td><td>0.02</td></loq<>	5.65	0.02
8月11日	0.52	<loq< td=""><td>5.64</td><td>0.02</td></loq<>	5.64	0.02
8月12日	0.49	<loq< td=""><td>6.27</td><td>0.02</td></loq<>	6.27	0.02
8月13日	0.46	<loq< td=""><td>5.89</td><td>0.02</td></loq<>	5.89	0.02
8月14日	0.37	<loq< td=""><td>4.93</td><td>0.02</td></loq<>	4.93	0.02
8月15日	0.46	<loq< td=""><td>5.57</td><td>0.02</td></loq<>	5.57	0.02
8月16日	0.43	<loq< td=""><td>5.69</td><td>0.02</td></loq<>	5.69	0.02
8月17日	0.44	<loq< td=""><td>6.80</td><td>0.02</td></loq<>	6.80	0.02
8月18日	0.52	<loq< td=""><td>7.88</td><td>0.03</td></loq<>	7.88	0.03
8月19日	0.51	<loq< td=""><td>4.77</td><td>0.02</td></loq<>	4.77	0.02
8月20日	0.49	<loq< td=""><td>5.28</td><td>0.02</td></loq<>	5.28	0.02
8月21日	0.48	<loq< td=""><td>5.18</td><td>0.02</td></loq<>	5.18	0.02
8月22日	0.51	<loq< td=""><td>6.02</td><td>0.02</td></loq<>	6.02	0.02

表 3-2.2 監測日均值(22/30)

111 /5	監測測項(ppb)				
114 年	己烷	硫化氫	異丁烷	異丁烯	
8月23日	0.49	<loq< td=""><td>6.37</td><td>0.02</td></loq<>	6.37	0.02	
8月24日	0.47	<loq< td=""><td>5.70</td><td>0.02</td></loq<>	5.70	0.02	
8月25日	0.40	<loq< td=""><td>5.63</td><td>0.02</td></loq<>	5.63	0.02	
8月26日	0.42	<loq< td=""><td>7.00</td><td>0.02</td></loq<>	7.00	0.02	
8月27日	0.57	<loq< td=""><td>9.54</td><td>0.03</td></loq<>	9.54	0.03	
8月28日	0.51	<loq< td=""><td>9.60</td><td>0.03</td></loq<>	9.60	0.03	
8月29日	0.71	<loq< td=""><td>10.8</td><td>0.04</td></loq<>	10.8	0.04	
8月30日	0.63	<loq< td=""><td>9.59</td><td>0.04</td></loq<>	9.59	0.04	
8月31日	0.39	0.10	6.68	0.02	
9月1日	0.44	0.08	5.48	0.02	
平均值	0.49	<loq< td=""><td>6.30</td><td>0.02</td></loq<>	6.30	0.02	
最大值	0.71	0.10	10.8	0.04	
LOQ	0.0099	0.0720	0.0650	0.0041	
LOD	0.0030	0.0216	0.0195	0.0012	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(23/30)

114 年		監測測]項(ppb)	
114 平	異戊烷	間-二甲苯	甲烷	甲醇
7月31日	ND	ND	ND	ND
8月1日	0.27	0.66	2440	0.43
8月2日	0.18	0.69	2245	0.39
8月3日	0.14	0.43	1900	0.30
8月4日	0.17	0.64	2030	0.49
8月5日	0.20	0.58	2825	0.65
8月6日	0.26	0.68	3120	0.81
8月7日	0.25	0.75	3140	0.96
8月8日	0.33	0.93	3595	1.18
8月9日	0.39	0.86	3855	1.09
8月10日	0.24	0.39	3050	0.45
8月11日	0.24	0.48	3150	0.45
8月12日	0.28	0.49	3140	0.53
8月13日	0.30	0.53	2755	0.67
8月14日	0.22	0.64	2645	1.01
8月15日	0.24	0.43	2770	0.88
8月16日	0.25	0.40	2750	0.69
8月17日	0.28	0.44	2805	0.77
8月18日	0.28	0.53	2750	0.74
8月19日	0.17	0.45	2340	0.69
8月20日	0.19	0.66	2505	0.84
8月21日	0.19	0.58	2575	0.84
8月22日	0.21	0.44	2865	0.83

表 3-2.2 監測日均值(24/30)

111 5	監測測項(ppb)				
114 年	異戊烷	間-二甲苯	甲烷	甲醇	
8月23日	0.22	0.49	3000	0.85	
8月24日	0.19	0.34	2610	0.69	
8月25日	0.19	0.36	2470	0.80	
8月26日	0.21	0.43	3045	0.94	
8月27日	0.27	0.57	3640	1.12	
8月28日	0.32	0.71	3920	1.29	
8月29日	0.32	0.68	4740	1.21	
8月30日	0.27	0.42	4335	1.14	
8月31日	0.21	0.34	2735	1.24	
9月1日	0.16	0.22	2435	0.79	
平均值	0.24	0.54	2945	0.80	
最大值	0.39	0.93	4740	1.29	
LOQ	0.0610	0.0038	0.7400	0.2650	
LOD	0.0183	0.0011	0.2220	0.0795	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(25/30)

114 年		監測》	則項(ppb)	
114 平	乙酸甲酯	氯甲烷	甲基環己烷	甲基異丁酮
7月31日	ND	ND	ND	ND
8月1日	0.82	0.11	0.11	0.18
8月2日	0.88	0.14	0.11	0.12
8月3日	0.68	0.14	0.09	0.09
8月4日	0.91	0.13	0.11	0.10
8月5日	0.84	0.16	0.13	0.13
8月6日	0.89	0.16	0.16	0.16
8月7日	0.88	0.16	0.16	0.17
8月8日	1.04	0.17	0.15	0.23
8月9日	1.00	0.13	0.14	0.25
8月10日	0.63	0.15	0.10	0.17
8月11日	0.59	0.14	0.12	0.16
8月12日	0.66	0.18	0.12	0.22
8月13日	0.68	0.15	0.12	0.20
8月14日	1.19	0.14	0.10	0.17
8月15日	0.56	0.12	0.11	0.20
8月16日	0.51	0.14	0.11	0.19
8月17日	0.60	0.15	0.11	0.20
8月18日	0.48	0.15	0.11	0.19
8月19日	0.58	0.15	0.10	0.15
8月20日	0.67	0.15	0.10	0.14
8月21日	0.71	0.16	0.10	0.15
8月22日	0.84	0.15	0.11	0.18

表 3-2.2 監測日均值(26/30)

114 年	監測測項(ppb)				
114 平	乙酸甲酯	氯甲烷	甲基環己烷	甲基異丁酮	
8月23日	0.92	0.16	0.11	0.18	
8月24日	0.83	0.14	0.10	0.16	
8月25日	0.79	0.13	0.10	0.14	
8月26日	0.71	0.14	0.11	0.16	
8月27日	0.89	0.16	0.14	0.20	
8月28日	1.07	0.19	0.16	0.22	
8月29日	1.06	0.19	0.15	0.29	
8月30日	0.84	0.16	0.13	0.23	
8月31日	0.64	0.14	0.09	0.15	
9月1日	0.40	0.15	0.09	0.12	
平均值	0.77	0.15	0.12	0.18	
最大值	1.19	0.19	0.16	0.29	
LOQ	0.0278	0.0113	0.0140	0.0328	
LOD	0.0083	0.0034	0.0042	0.0099	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(27/30)

114 年		監測測	则項(ppb)	
114 平	辛烷	戊烷	丙醛	丙烷
7月31日	ND	ND	ND	ND
8月1日	0.72	0.24	0.02	1.14
8月2日	0.40	0.16	0.01	0.83
8月3日	0.23	0.13	0.01	0.69
8月4日	0.23	0.15	0.01	0.88
8月5日	0.25	0.18	0.02	1.01
8月6日	0.28	0.23	0.02	1.19
8月7日	0.35	0.23	0.02	1.19
8月8日	0.32	0.29	0.03	1.50
8月9日	0.27	0.35	0.05	1.46
8月10日	0.30	0.21	0.02	1.02
8月11日	0.22	0.21	0.02	1.14
8月12日	0.23	0.25	0.02	1.16
8月13日	0.19	0.27	0.02	1.15
8月14日	0.26	0.20	0.02	0.93
8月15日	0.18	0.21	0.02	1.04
8月16日	0.18	0.22	0.02	1.05
8月17日	0.17	0.25	0.03	1.04
8月18日	0.22	0.25	0.03	1.13
8月19日	0.19	0.15	0.02	0.78
8月20日	0.21	0.17	0.02	0.97
8月21日	0.16	0.17	0.02	0.87
8月22日	0.17	0.19	0.02	0.90

表 3-2.2 監測日均值(28/30)

114年	監測測項(ppb)				
114 平	辛烷	戊烷	丙醛	丙烷	
8月23日	0.21	0.20	0.02	0.87	
8月24日	0.17	0.17	0.02	0.77	
8月25日	0.18	0.17	0.02	0.81	
8月26日	0.18	0.19	0.03	0.91	
8月27日	0.20	0.24	0.04	1.17	
8月28日	0.26	0.29	0.04	1.25	
8月29日	0.21	0.29	0.04	1.27	
8月30日	0.19	0.24	0.04	1.08	
8月31日	0.12	0.19	0.02	0.78	
9月1日	0.15	0.14	0.02	0.70	
平均值	0.24	0.21	0.02	1.02	
最大值	0.72	0.35	0.05	1.50	
LOQ	0.0050	0.0243	0.0057	0.0350	
LOD	0.0015	0.0073	0.0017	0.0105	

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

表 3-2.2 監測日均值(29/30)

114 年		監測測項(ppb)	
114 +	丙烯	四氯乙烯	甲苯
7月31日	ND	ND	ND
8月1日	0.03	0.14	1.39
8月2日	0.02	0.25	1.79
8月3日	0.01	0.21	1.02
8月4日	0.02	0.18	1.78
8月5日	0.02	0.22	1.61
8月6日	0.03	0.26	1.57
8月7日	0.02	0.23	1.78
8月8日	0.03	0.28	1.98
8月9日	0.04	0.31	1.49
8月10日	0.02	0.34	0.98
8月11日	0.02	0.27	1.15
8月12日	0.03	0.30	2.09
8月13日	0.03	0.24	3.51
8月14日	0.02	0.21	4.61
8月15日	0.02	0.27	1.21
8月16日	0.02	0.30	1.27
8月17日	0.03	0.29	1.22
8月18日	0.03	0.28	0.95
8月19日	0.02	0.29	1.01
8月20日	0.02	0.27	1.48
8月21日	0.02	0.25	0.96
8月22日	0.02	0.31	1.50

表 3-2.2 監測日均值(30/30)

		監測測項(ppb)	
114 年	 丙烯	四氯乙烯	甲苯
8月23日	0.02	0.29	1.83
8月24日	0.02	0.31	2.03
8月25日	0.02	0.29	0.88
8月26日	0.02	0.28	1.13
8月27日	0.03	0.34	1.37
8月28日	0.03	0.36	1.83
8月29日	0.03	0.47	1.36
8月30日	0.03	0.41	1.11
8月31日	0.02	0.28	0.84
9月1日	0.02	0.27	0.50
平均值	0.02	0.28	1.54
最大值	0.04	0.47	4.61
LOQ	0.0134	0.0517	0.0029
LOD	0.0040	0.0155	0.0009

^{2.}定量極限(limit of quantification, LOQ):分析物在樣品中可被定量而且具準確性,可被接受的最低量。

^{3.} 偵測極限(limit of detection, LOD): 檢測過程能夠定量的最低待檢物濃度。

^{4.&}quot;---"表示監測儀器異常無監測值。

四、結論

VOC1 車於 114 年 7 月 31 日至 9 月 1 日針對臺中港科技產業園區周圍環境空氣品質進行監測。氣象監測結果,期間主要風向為南南西~南風,期間風速平均為 0.7 m/s,最大風速為 2.3 m/s。監測前十項濃度較高濃度物種依序為甲烷、氨、乙烷、異丁烷、丙酮、丁酮、甲苯、甲醛、乙酸及庚烷,各項物種濃度均低於固定污染源周界標準及固定污染源有害空氣污染物排放標準。